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1. Motivation
Large-scale enterprise IT (EIT) implementation
projects (e.g., Chellappa and Saraf 2010, Hitt et al.
2002) are risky by nature (Haines and Goodhue 2003,
McFarlan 1981, O’Leary 2002). According to a report
by a leading enterprise resource planning (ERP)
vendor, 51% of projects suffered from unforeseen
implementation issues, 53% of projects exceeded
cost estimates, 83% of projects were delivered late
or over budget, 42% of projects had incomplete
features or functions, and 40% of projects failed to
achieve their business cases (Pike 2006). Empirical
evidence in an ERP context suggests that managers
and investors perceive particularly high risks for
EIT projects (e.g., Hitt et al. 2002). EIT projects typ-
ically get outsourced to consulting companies for
implementation and maintenance. Such projects are
notoriously complicated and place burdens on the
design of IT outsourcing relationships, especially

on the contracts that codify these relationships.
Nearly all large firms have, or are in the process of
implementing, large-scale enterprise systems, and it
is not unusual for these projects to include various
contracting opportunities spanning multiple years
(e.g., O’Leary 2002). Contracts provide the primary
means of IT governance (Nolan and McFarlan 2005),
codifying client–vendor relationships in IT outsourc-
ing agreements (Clemons et al. 2001). Well-designed
contracts can help manage the problems of ex-ante
incomplete information (e.g., requirements, client
characteristics, or vendor capabilities) and provide
a framework for measuring performance, providing
incentives, and managing technical, business, and
managerial risks. Yet considerable evidence indicates
that many outsourcing agreements prove difficult to
manage, as reflected in the serious problems observed
in some major ERP implementations (e.g., McAfee
2003, Mendelson 2000, Scott 1999).

787



Wu et al.: Analytical and Experimental Investigation of IT Value, Learning, and Contract Structure
788 Information Systems Research 24(3), pp. 787–801, © 2013 INFORMS

EIT implementation contracts tend to be similar
across different projects because they rely on the com-
moditization and standardization of business pro-
cesses (Davenport 2005). In addition, the industry
consists of few dominant software vendors and imple-
mentation consultants who generally share common
business practices. Projects also contain features com-
mon to regular IT contracts, though on a larger scale;
such as the extensive use of outside consultants, the
use of packaged software, and largely observable ini-
tial results (i.e., the client can either “go live” with the
system or not).

The similarity of ERP contracts across installa-
tions and vendors makes it possible to capture the
variation of ERP contracts along relatively few dimen-
sions. In this paper, we focus on one particular char-
acteristic that creates considerable variation across
projects—the choice between structuring the project
as a single-stage “big bang” implementation without
any intermediate decision points, and a multistage
incremental “rollout” with scheduled intermediate
deliverables enabling a “continue or terminate” deci-
sion. Thus, a critical question in structuring an ERP
project is how long to make each stage, with the pos-
sibility that it may be optimal to make the first stage
the entire project.

The nature of ERP projects clearly makes stage
length a strategic choice. Implementations can be
done in the form of a pilot implementation, which
is then subsequently rolled out geographically in an
identical form to multiple sites. Alternatively, ERP
projects can be implemented by module—with core
functions implemented over multiple sites (e.g., man-
ufacturing planning, procurement, human resources),
followed by additional modules that provide supple-
mental functionality (e.g., supply chain management,
customer relationship management). A multistage
contract enables the effective use of information gath-
ered during the project, such as midterm project eval-
uations, that may reduce subsequent period project
risks, improve vendor incentives,1 or enable early
terminations of unsuccessful projects. This phased
approach also offers a means to assess best prac-
tices and disseminate them to the project team, so
teams can improve their performance through learn-
ing. Because process redesign and testing, training,
and deployment can entail an estimated 12%–15%
of total project expenditures in a typical EIT project
(Brynjolfsson et al. 2006), client-specific learning can
have a significant impact on project value (e.g., Hitt
et al. 2002, McAfee 2003). ERP vendors understand

1 Haines and Goodhue (2003) document three cases of moral hazard
in ERP implementations, including one case of an outcome failure
(production showdown for almost a month) that they attribute to
consultant moral hazard behavior.

the benefits of staging and having a flexible project
scope:

Implementation of SAP software is a process that often
involves a significant resource commitment by our cus-
tomers and it is subject to a number of significant
risks over which we have little or no control 0 0 0 0 Our
customers now increasingly follow modular project
approaches to optimize their IT environment. They
embark on sequentially integrated individual projects
with a comparatively low-risk profile to realize spe-
cific potential improvement instead of pursuing highly
complex resource-intensive “big bang” projects to
implement an all-embracing IT landscape.

(SAP 2008 annual report, p. 123)

Subdividing a project is not without costs, which
may explain the use of “big bang” projects in prac-
tice. Subdividing a project may increase coordination
costs between stages and delay the implementation of
later stages, thus reducing or delaying realization of
value (e.g., some mission-critical enterprise systems
may have more value by going live simultaneously
rather than sequentially). Staged implementation may
also lead to overinvestments during early periods, as
advancing to the next period requires success in the
previous period.

Our model focuses specifically on the choice of
project staging. We consider a project of fixed dura-
tion that can be divided into two stages and out-
sourced to an implementation vendor. Allowing for
different learning processes and project risks, we
derive the optimal contract which specifies vendor
compensation (fixed and outcome-based payments
for each stage) and the optimal stage length. All else
being equal, combining the optimal payment struc-
ture with a multistage contract allows the client to
capture greater overall IT project value, because it
mitigates project risks and increases learning bene-
fits by prompting the implementation team to exert
greater efforts in early stages. However, under some
conditions, such as when there is limited learning,
“big bang” full projects can be optimal. These find-
ings are robust to several model extensions. We
use controlled laboratory experiments involving stu-
dents and IT executives to complement our analyti-
cal approaches and demonstrate further robustness of
our key findings.

All proofs appear in the online supplement of
this paper (available at http://dx.doi.org/10.1287/
isre.1120.0448). Due to space limitations, we have
omitted details of the laboratory experiments but they
are available from the authors upon request.

2. Literature Review
Our work draws from three streams of research.
We briefly review each, linking key elements of our
model to the literature.
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2.1. Learning and Dynamic Production Function
The first stream of related literature involves the
dynamic nature of production processes as firms
increase their productive capabilities through experi-
ence. Levy (1965) was among the first to model these
processes explicitly, using an exponential production
function model that enables a firm to accumu-
late experience in its workforce through training
and production activity until it achieves target pro-
ductivity (or the full potential of its production
technology). Gaimon (1997) considers the underlying
processes that may characterize the productivity of
IT-enabled knowledge work and describes the desir-
able attributes of a production function in this setting.
Gaimon’s analysis suggests that an exponential func-
tional form that incorporates a learning process meets
all the required criteria and appears superior to some
standard alternatives for modeling IT implementation
projects. Case-based research on ERP systems is con-
sistent with a time-dependent learning process, both
before and after implementation (McAfee 2002).

We adopt this dynamic production process (learn-
ing) view of IT implementation and, specifically,
the exponential functional form that characterizes
the process (Levy 1965). This structure incorporates
decreasing returns, which dates back to Brooks (1975)
in the field of software development, and has been
well documented in project management literature as
well (e.g., Loch and Kavadias 2002), especially in the
IT project management literature (e.g., Banker et al.
1998, Barry et al. 2002, Kirsch 2000, McFarlan 1981).
We extend Levy’s basic model to capture the key fac-
tors in the IT implementation context, including the
role of skill, effort, and project size in determining
project outcomes, in the presence of both controllable
and uncontrollable project risks. Researchers also note
that training and learning represent important com-
ponents of project risk management (Anderson 2001,
Banker et al. 1998, Barry et al. 2002, Umble et al. 2003),
both before and during a project (Anderson 2001,
Gaimon et al. 2011). Thus, we extend and reinter-
pret Levy’s workforce skill–outcome model by allow-
ing the relationship between effort and project success
rate to vary by vendor capability, which can evolve
through learning.

2.2. Multi-Period Moral Hazard
The second stream of related research entails the well-
established literature on principal–agent formalisms,
which considers the general problem of providing
incentives in a variety of settings (e.g., Holmstrom
1982; McAfee and McMillan 1986, 1987). Typically,
to mitigate the moral hazard problem that results
from unobservable effort by the agent, principals
implement incentive contracts that compensate agents
on the basis of observable outcomes. The literature

has well characterized the properties of the single-
period principal–agent problem. However, we know
significantly less about multiperiod (or finite-horizon)
moral hazard games (e.g., Chiappori et al. 1994),
the setting that seems to naturally characterize large-
scale IT implementations. Prior works by Lambert
(1983) and Rogerson (1985) suggest a special role
of memory in finite horizon moral hazard models,
in contrast with infinite horizon models where com-
pensation can be based on long-run summary statis-
tics (e.g., Holmstrom and Milgrom 1987; Radner 1981,
1985). See Chiappori et al. (1994) for a survey of this
literature.

We apply the most recent developments in control-
ling dynamic moral hazard in contract theory in the
EIT contract setting with small variations, in order
to capture the details and key project characteristics
observed from actual EIT contracts, such as the lin-
ear fee structure. Essential to EIT projects are linkages
between periods, which have rarely been considered
in the existing literature. In particular, we consider
the potential for change in the effort–output relation-
ship through agent learning over time and risk reduc-
tion through information updating over the course of
the project.

2.3. IT Outsourcing and Contracting
The final stream of related literature pertains to
outsourcing risk management (e.g., Clemons et al.
2001) and software development contracting (e.g.,
Richmond and Seidmann 1993, Richmond et al.
1992, Wang et al. 1997, Whang 1992), as well as
the broader literature on IT outsourcing, which has
taken a much more qualitative evaluation approach
(e.g., DiRomualdo and Gurbaxani 1998, Lacity and
Hirschheim 1993, Lacity and Willcocks 1998).

Our analysis complements research that empha-
sizes monitoring (Nolan and McFarlan 2005) and
incentives (Choudhury and Sabherwal 2003) in IT
contracting, as well as the uncertainty reduction
achieved through information updating over the
course of a project (Snir and Hitt 2004, Whang 1992).

Through analyses of actual ERP contracts, we iden-
tify at least two major structural dimensions that cap-
ture much of the variation in project structure.2 First,
though firms purchase ERP software externally, they
must decide whether to perform the implementation
in-house (insource) or contract with a service provider
(outsource). Second, an outsourced contract can be
a single-stage “big bang” implementation or a series

2 Over a period of several years (2000–2006), students of two major
U.S. universities searched and analyzed publicly available ERP con-
tracts for course credits, drawing on sources provided by clients,
ERP consultants, and software vendors. In addition, the research
team conducted site visits to examine real-world EIT projects and
a set of real-life contracts from a major ERP vendor.
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of sequentially interlinked subprojects that give the
client a termination decision at the end of each period.

Beyond these major decisions, the contracts prin-
cipally differ in their use of fixed-fee versus incen-
tive payments and the extent to which the vendor
makes relationship-specific investments (e.g., training,
facilities). We observed that the variable portions of
payments may be structured in several ways. Some
contracts include specific bonus/penalty clauses, oth-
ers include negotiated rate increases or discounts for
future work, and some guarantee a preferential posi-
tion (“right of first refusal”) to the vendor in future
bidding. In one set of contracts, we observed links of
productivity and performance with ERP implemen-
tation in the oil and gas industry, in which pre-ERP
performance serves as a benchmark for the revenue-
sharing agreement associated with post-ERP imple-
mentation. These structures can be captured using a
fixed-fee plus performance-based variable incentive
structure—to the extent that their objectives are to pro-
vide incentives to the vendor. These observations are
consistent with incentives observed in practice per-
taining to IT service consulting and development (e.g.,
James 1998) or in research pertaining to after-sales ser-
vice support (Cohen et al. 2006).

In this paper, we focus on the firm’s optimal
contract choice regarding the two key structural
dimensions—payment structure and sizing—in the
presence of agent learning. As a benchmark, we also
compute the optimal sizing and value of an insourced
project (where efforts are observable and there are no
moral hazard issues), and compare and contrast the
insourced case with the outsourced case.

Together, these arguments naturally suggest consid-
ering enterprise software contracting in a multiperiod
setting, such that the outcome (success or failure) in
the first period can influence continuation to a sec-
ond period (e.g., Pike 2006). We formally present a
model that integrates various isolated elements of the
three streams of research to capture the aforemen-
tioned salient features of EIT implementation. Finally,
we study the properties of the EIT project value func-
tion, and test model assumptions and key predictions
experimentally.

3. Model
We assume that a risk-neutral principal contracts with
a risk-neutral or a risk-averse agent for an enter-
prise IT project that generates a revenue of Q. The
principal can divide the project into two sequential
periods, with the outcome of each period randomly
determined but observable at the end of each period.
The outcome is assumed to take binary values of 1
(success) or 0 (failure). The contract specifies that con-
tinuation of the project to the second period project is
conditional on success in the first period. The agent

is assumed to be committed to complete the project
if desired by the principal, consistent with observed
contracting practice. The key notation for our model
appears as follows.

Q Total revenue created by the EIT project
si Size of the EIT project in period i

4s1 = �1 s2 = 1 −�5
Ri ≡ siQ Revenue of period i 4i = 1125
ai + biRi Two-part wage where ai is the fixed fee,

biRi is revenue sharing 4i = 1125
u4x5 Agent’s utility of profit

� Risk tolerance of the agent
r Interest rate
� Discrete case second period fixed dis-

count factor. In the continuous case, �1 =

e−rs11�= �2 = e−rs21 where r is the interest
rate

P̄i General IT implementation capability in
period i 4i = 1125

41 − P̄i5 Inherent IT project risk in
period i 4i = 1125

pi Production function in period i
4pi = P̄i41 − e−�i4xi/si551 i = 1125

�i Average skill (or expertise) in period i
4i = 1125

xi Effort in period i 4xi = −4si/�i5 ·

ln41 − pi/P̄i51 i=1125
ãi ãi ≡ P̄iQ− 1/�i − ln4�iP̄iQ5/�i 4i = 1125
�0

i Period i reservation profit (normalized
to 0)

�0 Reservation profit over the two-period
horizon (normalized to 0)

çi Principal’s expected profit from period i
V Total EIT project value captured by the

principal.
We further assume period i 4i = 1125 subproject

generates revenue of Ri = siQ if successful, where si is
the size (scope, duration or time) of the subproject
in that period, otherwise Ri = 0. We normalize the
overall project size to 1 (i.e., s1 + s2 ≡ 15 so we need
only one variable s1 ≡ � to capture sizing of the full
project (because s2 = 1−�5. The case when �= 1 illus-
trates that the principal contracts the full project to
the agent in a single stage. We denote � the small-
est feasible project size (e.g., the core module) so that
0 < �≤ �≤ 1. In practice, � represents the principal’s
choice of project staging, including a full project or any
subset of sequentially interlinked incremental phases,
such as planning and design, construction and imple-
mentation, maintenance, support, and ongoing ser-
vices related to the project (e.g., Markus et al. 2000,
McAfee 2003). We assume stage 1 must include the
core development, but concurrently other components
may also be developed.3 In a software-as-a-service

3 We thank a referee for this clarification, which makes the scope
of stage 1 endogenous.
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context (Chou 2010), stage length represents the time
between contract renewals. For simplicity, we assume
a continuous �.

The principal’s pure strategy is to specify a wage
function in a long-term contract 6ai1 bi3 si71 i = 1121
which takes the linear form of ai + biRi. Here ai is
a fixed fee, bi > 0 is a revenue sharing factor contin-
gent on outcome success, otherwise bi = 0. The agent’s
pure strategy is the mapping from the wage func-
tion to the agent’s action or effort xi. For tractability
as well as consistency with observed contracting prac-
tice (see §2.3), we restrict our attention to two-part
linear contracts rather than abstract reward functions
in the extant literature (e.g., Lambert 1983, Rogerson
1985). Our two-part linear contracts, however, are
quite general. For instance, parameter choices can
yield a “big bang” (s1 = � = 15 or multistage (s1 < 15
project structure, fixed fee (bi = 01 i = 1125 contracts or
incentive (bi > 01 i = 1125 contracts, with or without
upfront vendor investments (ai ≥ 01 i = 1125, contracts
in which a vendor posts bonds or makes fixed co-
investments in project preparations (ai ≤ 0, i = 1125,
and various combinations of these characteristics.

We extend existing moral hazard models by incor-
porating learning. The existence of effort-dependent
learning is perhaps the most important, and the pri-
mary assumption that distinguishes our analysis from
other principal-agent analyses. Following Levy (1965)
and Gaimon (1997), we initially adopt an exponential
learning function that relates outcome in each stage
(pi) with inherent project risk (1 − P̄i), skill �i and
project stage size si.

Assumption A0 (Dynamic Production Func-
tion). p14x11 s11 P̄11�15 = P̄141 − e−�14x1/s155, and
p24x21 s21 P̄21�2 � period 1 succeeds5= P̄241 − e−�24x2/s255.

Essentially, our dynamic production function cap-
tures two types of risks: inherent project risks
41 − P̄i5, which represent technical, business, or man-
agerial challenges that are part of the project (e.g.,
O’Leary 2002), and controllable risks e−�i4xi/si5, which
are influenced by agent effort xi, expertise �i, and
project size si. For a given project size at each period,
because inherent project risks and controllable risks
are statistically independent, outcome success of the
EIT project depends on the successful removal of
both risks, leading to the multiplicative form of pi we
are using.

The information structure of the game is as fol-
lows. We assume the agent’s expertise levels �i

are common knowledge. Because both project value
and agent expertise are known to the client, the
potential adverse selection issues (Snir and Hitt
2004, Whang 1992) have presumably been resolved,
and our model focuses purely on moral hazard

(e.g., Holmstrom and Milgrom 1987).41 5 At the end of
each period, the binary outcomes are observable and
contractible; in essence, the outcome is whether the
principal accepts or rejects the agent’s delivery. How-
ever, the agent’s efforts are not observable and cannot
be “reverse engineered” from observable data because
of the random component of the outcome. Con-
ditional on a successful first-period, some inherent
project risks can be reduced such that 1 − P̄2 ≤ 1 − P̄1,
perhaps through business process redesign. Conse-
quently, both the principal and the vendor share a
common updated belief such that P̄2 ≥ P̄1. We dis-
cuss the case when updating is affected by project
size � in a model extension, but we initially treat
these capability factors as constants. The possibility
of learning between the two periods derives from
learning-by-doing or deliberate investments in team
skill and project-specific risk management capabilities
(e.g., post-project audit, staff training, or staff real-
location). Learning changes the relationship between
effort and project outcomes, and the updated skill
level is common knowledge.

The nature of the contracts and the structure of the
industry make it unlikely that the contract will be sub-
ject to renegotiation after the first stage. We assume
that the agent is bound to complete the project if
desired by the principal (a practice we have observed)
and derive the optimal contract under agent indi-
vidual rationality in both periods. Provided that
project learning is project specific, the vendor’s out-
side options do not change as the project progresses
and thus the vendor cannot credibly threaten to termi-
nate a successful contract even if it was contractually
permissible. In optimum, the principal may desire
to continue a failed project as the principal knows
this was due to uncontrollable risks and not agent
under performance, but is unable to do so because
a failed first stage in most IT implementations pre-
vents progressing to later stages. For instance, if the

4 Because a limited number of vendors engage in large-scale EIT
work, we presume the client can observe the vendor’s history to
infer its skill ex-ante, and monitoring and coproduction during the
project enable assessments of expertise changes during the project.
When initial expertise is unknown, the client can engage in a selec-
tion process or a separate pilot project to determine vendor skill
(e.g., Snir and Hitt 2004).
5 It is worthwhile to compare and contrast the real options approach
in risk management with the model we are developing, which
focuses on staging. Staging has the same structure as a real options
problem, which is a deferred decision. In our context, the uncer-
tainty is solely related to the realization of contract risks, and the
contract is not terminated because something is learned about the
setting or the vendor but because an intermediate failure prevents
continuation. It is interesting to note that staging does limit the
principal’s risk in the presence of adverse selection, but that is not
an explicit component of our model. In our contracts, both parties
understand and agree ex-ante that there will be no second period
project if the first period fails.
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Figure 1 Decision Tree

[ai, bi; si]

Principal offers
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[0, 0]

Project terminated

[–a1, a1 – x1]

Project terminated

Principal offers

Failure

Success

1– p1

1– p2

p1

[a2, b2; s2]

[R2–(a2 + b2R2), (a2 + b2R2)– x2]

Accept

Reject

[0, 0]

Project terminated

Failure

p2

Success

[–a2, a2 – x2]

Stage 1 Stage 2

[R1 – (a1 + b1R1), (a1 + b1R1) – x1]

Discount �

core module of an ERP installation is not operational,
supplemental models cannot be installed. This is a
different structure than many prior repeated agency
models which has the agent performing similar tasks
in each stage and where principal commitment is
often enforced with auxiliary assumptions such as
reputational concerns.6

We employ a sub-game perfect equilibrium (SPE)
solution concept (e.g., Bolton and Dewatripont 2005,
p. 421; Chiappori et al. 1994; Lambert 1983). Figure 1
depicts the decision tree of the principal and
the agent.

4. Impact of Contract Structure
We assume the agent is risk-neutral. Later on we
extend the model to the case when the agent is risk-
averse. When both the principal and the agent are
risk-neutral, the linear contract form has a useful
property that it is optimal among all possible contract
forms (e.g., Holmstrom and Milgrom 1987).

We first consider the case (see §4.1) when the
principal wishes to structure the EIT project as a
single-stage “big bang” contract. We then consider the
two-stage case (see §4.2).

4.1. Optimal Single-Stage Contract
For simplicity, we first assume no discounting for
the single-stage case such that � = 1. Later we
extend to the case when there is a discount. The

6 We would like to thank the AE and two anonymous reviewers for
their insightful comments in the IT contracting context, which has
clarified the potential for renegotiation in the setting we consider.

principal’s problem is:

max
a11 b1

{

V 4a11 b13 s1 = 15

=ç1 = 6p14R1 − a1 − b1R15+ 41 − p154−a157
}

1

subject to

(i) �4x∗
15= p14a1 +b1R1 −x∗

15+ 41−p154a1 −x∗
15≥�0,

(Agent IR)
(ii) x∗

1 solves maxx1
8p14a1 + b1R1 − x15 + 41 − p15 ·

4a1 − x159. (Agent IC)

The first constraint (i) requires that the agent’s
expected payoff must exceed the agent’s reservation
profit �0 to satisfy the agent’s individual rationality
requirement. The second constraint (ii) satisfies the
agent’s incentive compatibility requirement.

Solving the principal’s problem, we obtain the
following Lemma 1. For convenience of exposition,
we define P̄iQ− 1/�i − ln4�iP̄iQ5/�i ≡ãi.

Lemma 1. Assume agent is risk-neutral. Optimal
single-stage contract 4a∗

11 b
∗
15, agent effort 4x∗

15 and optimal
IT project value 4V ∗5 are given as follows:

a∗

1 = −

[

P̄1Q−
1
�1

−
ln4�1P̄1Q5

�1

]

+�0
= −ã1 +�01

b∗

1 = 11

x∗

1 =
ln4�1P̄1Q5

�1
1

V ∗
= −a∗

1 =

[

P̄1Q−
1
�1

−
ln4�1P̄1Q5

�1

]

−�0
=ã1 −�00
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It is straightforward to verify that the above opti-
mal solution is efficient, as it is identical to the solu-
tion when the agent effort is observable (therefore
removing moral hazard) or if the principal can do the
project alone (assuming they have the expertise).

4.2. Optimal Two-Stage Contract
We now consider the principal’s two-stage contract-
ing problem. We solve the model in two steps. First,
given any project sizing �, with 0 < � ≤ � = s1 ≤ 1
(thus s2 = 1 − �51 we solve for the optimal fee struc-
tures (a∗

i 1 b
∗
i 5 at each period i taking into account how

different incentive payments affect agent effort and
participation. Second, we solve for the optimal sizing
�∗ = s∗

1 (with s∗
2 = 1 −�∗5.

To obtain optimal fee structures (a∗
i 1 b

∗
i 5, we use

backward induction (i.e., dynamic programming).
At the beginning of period 2, the principal updates
the contract (a21 b25 after observing the agent’s first-
period performance:

max
a21 b2

ç2 = p26R2 − 4a2 + b2R257+ 41 − p254−a251

subject to
(i) �24x

∗
25= p24a2 +b2R2 −x∗

25+41−p254a2 −x∗
25≥�0

2 ,
(Agent IR)

(ii) x∗
2 solves maxx2

8�24x25 = 6p24a2 + b2R2 − x25 +

41 − p254a2 − x2579. (Agent IC)

The objective function is the principal’s expected
profit in the second period, given the updated infor-
mation of P̄2 ≥ P̄1 and the agent’s updated expertise
�2 ≥ �1, so that

p24x21 s21 P̄21�2 � period 1 succeeds5= P̄241 − e−�24x2/s2550

Solving, the principal’s optimal second period strat-
egy (a∗

21 b
∗
25, and the agent’s optimal effort (x∗

25 are:

a∗

2 = −s2

[

P̄2Q−
1
�2

−
ln4�2P̄2Q5

�2

]

+�0
21 (1)

b∗

2 = 11 (2)

x∗

2 = s2
ln4�2P̄2Q5

�2
0 (3)

Similarly, the principal’s problem at time 0 (i.e., the
beginning of period 1) is:

max
a11 b1

V 4a11 b13 s11 s21 a
∗

21 b
∗

25

=ç1 + p1�ç
∗

2

= 6p14R1 − a1 − b1R15+ 41 − p154−a157+ p1�ç
∗

21

subject to
(i) �4x∗

15 = p14a1 + b1R1 − x∗
15 + 41 − p154a1 − x∗

15 +

p1��
∗
2 ≥�0, (Agent IR)

(ii) x∗
1 solves maxx1

8p14a1 + b1R1 − x15 + 41 − p15 ·

4a1 − x15+ p1��
∗
2 9. (Agent IC)

Solving, the principal’s first period optimal strat-
egy (a∗

11 b
∗
15, and the agent’s optimal effort in response

(x∗
15 are:

a∗

1 = −4s1ã1 + P̄1�s2ã25+
s1

�1
ln
(

1 +
�s2ã2

s1Q

)

+�01 (4)

b∗

1 = 1 +
�4s2ã2 −�0

2 5

s1Q
1 (5)

x∗

1 =
s1

�1
ln

�1P̄14s1Q+�s2ã25

s1
0 (6)

Consequently, the principal’s total IT project value
(or IT value function) is

V ∗
= ç∗

1
+ p1�ç

∗

2 = −a∗

1

= 4s1ã1 + P̄1�s2ã25−
s1

�1
ln
(

1 +
�s2ã2

s1Q

)

−�00 (7)

The IT value function as given in Equation (7) high-
lights the central trade-off in sizing (i.e., determining
optimal s∗

i 5 in a two-stage project—building higher
expertise (�2 ≥ �15 and increasing implementation
capability (P̄2 ≥ P̄15 for the second stage (via learning
in the first stage), versus investing additional effort
(third term in Equation (7)) to increase the chance of
continuation to the second stage of the project. There
is also a trade-off in timing; while a larger first-stage
project size increases second-stage expertise and capa-
bility, it shrinks time left 4s∗

2 = 1 − s∗
15 to harvest such

benefits (ã2 ≥ã1, or ãi is increasing in both �i and P̄i5.
We shall formally characterize the properties of the IT
value function later via Theorem 1 and its proof.

The optimal two-stage contract as defined in
Equations (1), (2), (4), (5) is equivalent to the prin-
cipal selling the project to the agent at each period.
The agent nets exactly its reservation profit because
both IR and IC constraints are binding (this prop-
erty is later exploited in our lab experiments). Note
that ãi 4i = 1125 can be interpreted as a kind of “unit
price.”7 Specifically, ã2 is a second-stage “unit price”
since the agent pays s2ã2 − �0

2 . Similarly, ã1 can be
interpreted as a first-stage “unit price.”

Further, we show in Proposition 1 that the above
optimal contract is viable (Whang 1992). A contract
is said to be viable if it satisfies the following four
properties (Whang 1992): (1) Efficiency: It induces the
same equilibrium decisions as the optimal in-house
implementation at each period; (2) Pareto Optimality:
The combined equilibrium payoff to the contracting
parties is the same as in in-house implementation;
(3) Incentive Compatibility: The principal reports the
true value of the system, which induces the agent
to exert an effort that maximizes its own profit; and
(4) Ex-ante Incentive Rationality: Both contracting

7 We thank an anonymous referee for this insight.
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parties have non-negative expected payoffs at the
time of contracting, so they voluntarily sign the
contract.

Proposition 1. Assume agent is risk-neutral. Given
any sizing of an IT project si 4i = 11251

(i) The linear contract form is optimal among all possi-
ble contract forms.

(ii) There exists a unique SPE for the principal’s
problem.

(iii) The optimal contract 6a∗
i 1 b

∗
i 3 si7 4i = 1125, as spec-

ified in Equations (1), (2), (4), (5), is viable.

Proposition 1 contributes to the literature by estab-
lishing the structure of the optimal contract capturing
unique characteristics of EIT projects, and by extend-
ing multiperiod agency models to a setting where
there is agent learning across project periods. Proposi-
tion 2, as follows, characterizes the comparative stat-
ics of the optimal contract.

Proposition 2. The IT value V increases monotoni-
cally in P̄i, �i 4i = 1125, Q, and �.

Proposition 2 suggests that the effects of exogenous
project parameters Q and � are in the expected direc-
tion. Note that Q and � are independent of P̄i or �i.
Consequently, the monotonicity of project value in
general IT implementation capabilities (P̄i5 or vendor
expertise (�i5 does not depend on exogenous project
parameters Q and �. Therefore, we may characterize
different learning conditions without being concerned
that the model will yield implausible results for some
values of the exogenous project parameters.

We now compare a multistage with a single-stage
“big bang” contract. If we consider discounting, the
optimal IT value for a single-stage (shown in §4.1) is:
V ∗4single-stage contract5 = V ∗415 = �ã1 − �0. There-
fore, the difference of optimal project value between
a two-stage contract and a single-stage contract is:

V ∗4two-stage contract5−V ∗4single-stage contract5

=�s24P̄1ã2 −ã15+41−�5s1ã1 −
s1

�1
ln
(

1+
�s2ã2

s1Q

)

0 (8)

From (8) we see that the additional learning benefit
due to staging is (�s24P̄1ã2 −ã15+ 41 −�5s1ã15, at the
additional cost/effort of 4s1/�15 ln41 +�s2ã2/4s1Q55.
We summarize this finding in Proposition 3:

Proposition 3. A two-stage contract is preferable to a
single-stage contract if, and only if, the benefit of staging
outweighs the cost of staging, i.e., if there exists �̂10 < �≤

�̂ < 11 such that 485 > 0 or equivalently, V ∗4�̂5 > V ∗415.

We illustrate the insights in Proposition 3 with two
simple examples.

Example 1. Assume Q = 2. If there is: no learning
(�2 = �1 = 15, no capability improving (P̄2 = P̄1 = 151

and no discounting (�= 15, then 485= −4s1/�15 ln41 +

�s2ã2/4s1Q55 < 0. A single-stage contract is preferable
to a two-stage contract, because in this case staging
incurs additional cost but gains nothing.

Example 2. Retain other assumptions of Example 1
but allow for some agent learning due to staging
such that �2 > e ≈ 20718 > 1 = �1. We have ã2 −ã1 =

4e− 2 − ln 25/e + ln 2 > ln 2. If we set s1 = 1/2, we
have 485 = 0054ã2 −ã15 − 005 ln61 +ã2/Q7 > 005 ln 2 −

005 ln61 +ã2/Q7 > 0. A two-stage contract is prefer-
able to a single-stage contract, because the additional
benefit due to staging offsets the additional cost of
staging.

Generally speaking, a two-stage contract is prefer-
able to a one-stage contract if there is sufficient learn-
ing benefit following a successful period 1 outcome
such that P̄1ã2 > ã1 (which can be satisfied if �2 is
sufficiently larger than �1 and P̄2 is sufficiently larger
than P̄1).

The above examples and discussion highlight the
importance of learning and capability in two-stage
contract design. We are interested in when a unique
interior solution to the optimal staging problem exists.
We begin with the most straightforward learning pro-
cess, in which expertise increases with the length of
the first stage. This yields the following assumption:

Assumption A1 (Concave Learning). Assume �1 is
fixed, �24�5 is increasing and concave over �.

Assumption A1, especially the concavity require-
ment, plausibly describes discovery learning pro-
cesses in which firms learn additional details as a
project progresses until they know essentially every-
thing and can learn little more. Nearly all learning
functions in the literature satisfy this condition (e.g.,
Lilien et al. 1992). We obtain the following general
properties of learning and project sizing under opti-
mal contracting:

Theorem 1. Assume A1. Assume both project revenue
Q and initial expertise �1 are sufficiently large so that the
project is feasible. Let �̂ ≥ � be the smallest project size
that satisfies V ∗4�̂5 > V ∗415, then a unique optimal siz-
ing exists 4�̂≤ �∗ < 15; otherwise a single-stage contract
4�∗ = 15 is optimal.

When the project revenue Q and initial expertise �1
are sufficiently large, Theorem 1 shows that the opti-
mal sizing of a project depends on vendor learning
and capability increase. The IT payoff function is well
behaved, in fact concave (“Inverted-U”) over project
size (see the proof of Theorem 1), so any hill climb-
ing method will reach the optimal interior point. An
approximation of the optimal sizing is given implic-
itly by �∗ ≈ 1 − 64P̄1�ã2 −ã15/4P̄1�574¡ã2/¡�5

−1.
To further explore the role of learning, it is use-

ful to explicitly provide a learning function so that
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we can characterize how the rate of learning affects
project sizing. Consider a general class of functions
that takes the form of �24�5 = �1 + 4�̄2 − �15�

1/n,
where n is interpreted as the rate of learning. This
functional form accommodates both linear and power
law relationships that have been discussed in the
prior literature, and this functional form anticipates
a function where additional project-specific experi-
ence enables an agent to become more capable, up to
some upper limit (�̄2 is a constant that bounds �25.
When n ≥ 11 this functional form yields a concave
relationship between experience and expertise, con-
sistent with Assumption A1. Further, when 0 <n< 11
the form is also capable of capturing a convex rela-
tionship between experience and expertise. With this
additional assumption we can show:

Corollary 1. Assume �24�5 = �1 + 4�̄2 − �15�
1/n.

Then: the faster the rate of learning (larger n), (i) the
larger the IT project value, i.e., ¡V ∗/¡n > 01 ∀n > 0, and
(ii) the smaller the optimal first-period project size �∗, i.e.,
d�∗/dn< 01 ∀n≥ 1.

As illustrated in Figure 2, Corollary 1 provides
the intuitive result that a faster learning rate always
allows the client to capture more project value. More-
over, if a project is to be staged, faster learning leads
to a smaller first stage. If we assume no discounting,
the shape of the project value function depends on the
speed of learning. Learning can change its shape from
convex to concave. If we assume a moderate level of
discounting, as we show later in Corollary 5, the con-
cavity of the IT value function holds beyond Assump-
tion A1 to include some cases of convex learning.

5. Extensions
Overall, Theorem 1 shows that as long as it is fea-
sible to do a project, the optimal sizing depends on

Figure 2 Risk-Neutral Agent: Project Value, Learning and Optimal
Staging
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1/n ,
�1 = 105, �̄2 = 3, �= 0001.

the learning rate, and that a faster learning rate yields
higher project value yet a smaller first-stage size;
a single-stage “big bang” project can be optimal under
certain conditions (such as if there is no learning).
In this section, we demonstrate that these general
properties are quite robust to much broader assump-
tions than could reasonably arise in EIT projects.

5.1. Generalized Concave Learning
Several other plausible assumptions apply to the rela-
tionships among project sizing and learning. One pos-
sibility is that learning occurs both during the first
and the second period �i4�5 4i = 1125, i.e., �1 is no
longer fixed but is also a function of �; the conclu-
sions of our preceding analyses generalize:

Corollary 2. Suppose the assumptions used in The-
orem 1 hold and a multistage contract is optimal.
A multistage contract remains optimal if learning occurs
both during the first and the second period, i.e., when
�i4�5 4i = 1125 are increasing and concave over �.

5.2. Time-Varying Inherent Project Risk and
Risk Reduction

In the first period, the inherent project risk may
depend on the project size, such that a larger project
may be more risky, and a “big bang” project has
the highest inherent project risk 41 − P̄14�= 155. It is
equally plausible, after the successful completion of
the first-period project, that the inherent project risk
changes (i.e., decreases). These two generalizations
can be summarized as follows.

Assumption A2 (Learning in Reducing Inherent
Project Risks). P̄14�5 is decreasing and linear over �,
and P̄24�5 is increasing and concave over �.

This assumption is consistent with a view that a
two-stage project can provide a Bayesian update of
the risk of the overall project; the information updat-
ing of the second-period inherent risk 41 − P̄24�55 is
conditional on first-period project success. Although
our more general Assumption A2 is consistent with
Bayesian updating, our interpretation hinges on the
nature of the EIT project, in the sense that a successful
first-period project removes some risks from the later
stages, rather than that firms learn about a purely
exogenous project risk.

Corollary 3. Suppose the assumptions used in Theo-
rem 1 hold and a multistage contract is optimal. A mul-
tistage contract remains optimal if there is learning that
reduces inherent project risks (as described by A2).

5.3. Learning Through Training
It is natural to believe that agents can acquire in-
creased ability not only through project-specific expe-
rience, but also through project-specific training,
which (in general) may be a function of project
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structure since the training can occur during the first
period. Let the training cost be represented by t14�5.
This gives rise to a more general concept of learning
when �24�1 t14�55 is a function of training. This cost
could also be viewed as an investment by the agent
in project-specific coordination. This can be formal-
ized as follows:

Assumption A3 (Learning through Training).
t14�5 is increasing and linear over time. Furthermore,
�24�1 t14�55 is increasing and concave in training t14�5.

Intuitively, Theorem 1 holds under A3 because the
introduction of an investment in training t14�5 does
not change the structure of our IT contract game, and
the optimal contract design remains the same—except
that we substitute agent reservation profit �0

1 with
�0

1 − t14�5.

Corollary 4. Suppose the assumptions used in Theo-
rem 1 hold and a multistage contract is optimal. A multi-
stage contract remains optimal if there is learning through
training (as described by A3).

Collectively, these results suggest that the general
structure of the results described by Theorem 1 is
robust. Now we consider the impact of a continuous
discounting rate.

5.4. Continuous Discounting
Assumption A4 (Continuous Discounting Rate).

Assume further the interest rate 0 < r < 2 is the same for
both the principal and the agent so that the discount factor
at each period i is e−rsi 4i = 1125.

Corollary 5. Assume A4. Assume Q and �1 are
sufficiently large for the project to be feasible. Then
¡2V /¡�2 < 0.

Corollary 5 demonstrates the expected impact of
discounting. If the principal and the agent are moder-
ately patient—the interest rate is positive but below a
reasonable threshold such that r < 2—then the IT pay-
off function becomes concave. Discounting at a rea-
sonable interest rate tends to preserve or strengthen
the concavity of the IT payoff function, so we extend
Corollaries 1–4 to the case of continuous discounting,
which suggests additional robustness of the structure
of the results described by Theorem 1.

5.5. Risk-Averse Agents
We now consider the possibility that the agent is
risk averse. For tractability, we consider risk-neutral
principals and agents that show constant absolute
risk aversion (CARA). CARA is commonly used in
principal–agent modeling when the agent is risk
averse (e.g., Holmstrom and Milgrom 1987).

Assumption A5 (CARA Utility). The agent has a
constant absolute risk aversion; that is, u4x5 = −e−�x for
some � ≥ 0.

To focus on the impact of the agent’s risk tolerance
(captured by �5, and without loss of generality, we let
P̄1 = P̄2 = 1, �0

1 = �0
2 = �0 = 0. We denote u4b2R25≡w,

u4b1R1 + e−rs2�0
2 5 ≡ v, and 4si/�i5� ≡ Bi1 for i = 112.

We add a superscript A to our key parameters to
denote risk attitude. By applying the certainty equiva-
lent principle, we solve again the two-stage principal–
agent problem. We summarize our findings in Theo-
rem 2. In equilibrium, the optimal long-term contract
6aAi 1 b

A
i 3 si7 4i = 1125 and the agent’s reaction becomes

aA1 =
1
�

ln
1 + v

B1
+

1 −B1

�
ln
[

B1

1 −B1

−v

1 + v

]

+�01 (9)

bA1 = 1 + e−rs2
çA

2

R1
+

41 + v5+ 41 −B1541 + v−15

�R1

< 1 + e−rs2
çA

2

R1
1 (10)

where çA
2 = 41 − bA2 5p

A
2 R2 − aA2 1

xA
1 =

s1

�1
ln
[

1 −B1

B1

1 + v

−v

]

1

aA2 =
1
�

ln
1 +w

B2
+

1 −B2

�
ln
[

B2

1 −B2

−w

1 +w

]

+�0
21 (11)

bA2 = 1 +
41 +w5+ 41 −B2541 +w−15

�R2
< 11 (12)

xA
2 =

s2

�2
ln
[

1 −B2

B2

1 +w

−w

]

0

The IT project value is

V A
= e−r�

(

pA1
41 + v−B1541 + v5

−�v
− aA1

)

0 (13)

Theorem 2. Assume A5. Let P̄1 = P̄2 = 1. Given any
sizing of an IT project si 4i = 1125, when a feasible con-
tract exists, then it is specified in Equations (9)–(12),
with project value given by (13). Further, as the agent
becomes more risk averse (but not extremely risk averse),
the principal needs to reduce the revenue-sharing fac-
tor and increase the fixed payment part. Formally,
¡bAi /¡� < 01 ¡aAi /¡� > 0, i = 112.

Note that, when initial expertise (�1) is sufficiently
large or when the agent’s risk tolerance is not so large
(� <�1 <�2) then a feasible contract exists.

Corollary 6. Assume A1 and A5. Let P̄1 = P̄2 = 1.
Assume fixed discount factors. Assume both project rev-
enue Q and initial expertise �1 are sufficiently large.
Assume a feasible contract exists, then the IT value func-
tion V A is concave in �. Formally, ¡2V A/¡�2 < 0.

We now characterize conditions when the optimal
sizing is an interior point, and vice versa.

Define �̂ as the smallest � that satisfies V A4�̂5 ≥

V A415. Corollary 6 implies that if �̂ exists, then an
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Figure 3 CARA Agent: Project Value, Learning and Optimal Staging
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interior optimal solution �̂≤ �∗ < 1 exists, meaning a
two-stage contract is optimal; otherwise a single-stage
“big bang” contract is optimal.

Finally, we show that our key findings—agent
learning increases client IT payoff when the agent is
risk neutral—continue to hold when the agent is risk
averse.

Corollary 7. Assume A1 and A5. Let P̄1 = P̄2 = 1.
Assume a general learning function such that ¡�2/¡n> 01
∀n> 0. Then ¡V A/¡n> 0.

As illustrated in Figure 3, key findings in the risk-
neutral case are robust when the agent is CARA risk
averse. Agent learning allows the client to capture
more project value, and staging can be desirable even
in the absence of learning, in contrast to the risk-
neutral case where an absence of learning implies
that a single-stage contract is preferable. As the agent
becomes more risk averse, the principal scales back
the revenue sharing factor but increases the fixed fee
payment. Conversely, when the agent becomes less
risk averse, the principal increases the incentives and
reduces the fixed fee payment. Consistent with the
literature in contract theory (Chiappori et al. 1994),
it is possible that the individual rationality constraint
cannot be satisfied, so there is no equilibrium with
agent participation and no opportunity for a feasible
contract. As with much of the principal–agent liter-
ature, we do not consider risk-averse principals due
to the additional complexity, although this scenario
could potentially be studied using simulation.

6. Experimental Evidence
In this section, we focus on experiments related to the
main predictions of our model in the context of EIT

contracting. We are interested in testing whether stag-
ing the project has the expected benefits under differ-
ent learning rates. We are also interested in testing if
a faster learning rate encourages decision makers to
select a smaller first-stage size.

In our experiments, subjects act as consultants (rep-
resenting the agents) playing against a computer
(which represents the client or the principal) in a two-
stage game in which the client contracts with the con-
sultant for an IT project. A subject, presented with an
effort-outcome mapping table (computed using our
model), decides how much effort x to invest at each
stage. After the investment, the binary outcome (suc-
cess or failure) is realized and shown to the subject.
We examine how experimental subjects perform rela-
tive to our theoretical predictions in Corollary 1.

We test three rates (slow, medium, fast) of agent
learning. All treatments have the same expected profit
and parameter set (except learning rate). Table 1 sum-
marizes our experiments’ design.

The risk-neutral model offers optimal contract
parameter settings, which are conservative estimates
compared with those produced by the risk-averse
model (from Theorem 2). We parameterize our learn-
ing function in Corollary 1, �2 = �1 +4�̄2 −�15�

1/n with
�̄2 = 1 and three scenarios of learning: n= 005 for slow
learning (Treatment 1, T15, n = 009 for medium learn-
ing (Treatments 2 and 3, T2 and T35, and n = 20 for
fast learning (Treatment 4, T45. We test how learning
allows the client to receive higher value by staging the
project. Specifically, our model predicts the following:

Hypothesis 1 (H1). Client project value increases
(a) from T1 to T3, (b) from T3 to T4, and (c) from T1 to T4.

To test whether faster learning reduces first-
period project size, controlling for client profit, we
added treatment T2 which has a smaller first-period
size compared with T1. We examine this predic-
tion indirectly through the consultant effort level at
Stage 1, which should decrease due to size reductions;
hypothesized as follows:

Hypothesis 2 (H2). First-period consultant effort x1
decreases from T1 to T2.

We conducted three series of experiments with
different subjects for a total of eight sessions last-
ing 90 minutes each. In Experiment 1, our baseline

Table 1 Treatments

Slow learning Medium learning Fast learning
(n = 0055 (n = 0095 (n = 205

Two-stage incentive T2

payment (suboptimal)

Two-stage incentive T1 T3 T4

payment (optimal)
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Table 2 Parameterization for Real Run Experiments

External environment Stage 1 contract Stage 2 contract Client profit

� �1 n �2 a1 b1 a2 b2 V

T1 003 001 005 00181 −220547 10894 −260812 10000 220547
T2 00128 001 009 00192 −220547 30822 −360178 10000 220547
T3 003 001 009 00336 −250845 20061 −310842 10000 250845
T4 003 001 2000 00947 −290020 20222 −360662 10000 290020

Notes. Across all treatments, Q= 100, P̄1 = P̄2 = 007, r = 0. The expected consultant profit remains the same, �0
i = 12 4i = 1125, across all treatments.

experiment, we recruited 7 subjects each in Treatments
1–4 from a general student pool (undergraduate stu-
dents randomly recruited on campus via campus
advertisements) for two sessions.8 We conducted two
additional series of experiments for robustness in
another location. Experiment 2 used 9, 10, 16, and
13 subjects, respectively, in Treatments 1–4. Subjects
in Experiment 2 were graduate and undergraduate
students who had completed half of a semester-long
course on IT management and were familiar with top-
ics such as ERP systems, implementation, and out-
sourcing. Finally, the single session in Experiment 3
involved 8 and 7 executives in Treatments 1 and 4,
respectively; their average 17 years of industry experi-
ence makes Experiment 3 essentially a controlled field
experiment (e.g., Harrison and List 2004).

To provide corresponding incentives to the subjects,
we used cash payments for Experiment 1, course cred-
its for Experiment 2, and lottery money for Experi-
ment 3. Subjects could “test drive” the system during
10 dry runs before they participated in the 30 real
runs. Although the structure of the game remained
the same between dry and real runs, we used slightly
different parameters.9 We summarize the parameteri-
zation of our real run experiments in Table 2.

We summarize our findings in Tables 3–5. We find
that, overall, the client is able to capture more project
value from increased consultant skill via learning and
staging, as H1(b) and H1(c) are both supported. In
Experiment 1, client profit increases from 17.247 in T1
to 18.486 in T3 (t = 0.941, n.s.) to 21.466 in T4 (t =

206371 p < 001). Results are similar in Experiment 2 and
Experiment 3 (when applicable). We find only partial
support for H1(a), as client profit increase from T1 and
T3 in Experiment 1 is not significant, perhaps due to
small changes in learning rates (from n= 005 to n =

0095; it turns out to be significant in Experiment 2, as

8 Total numbers of subjects in each experiment were 42 (Experi-
ment 1), 73 (Experiment 2) and 24 (Experiment 3), respectively.
The remaining subjects were used for additional treatments (not
reported here for brevity, but available from the authors upon
request) for further robustness testing of our modeling predictions.
9 Our design of slightly different parameterizations for the dry ver-
sus real runs follows the experimental economics literature and
ensures the attention of the subjects.

client profit increases from 16.625 in T1 to 18.218 in T3
(t = 20011 p < 001).

Our analysis also provides partial support for H2.
In Experiment 1, consultants scale back their Stage 1
effort from 10.257 (T15 to 5.586 (T25 in response to
a reduced first-stage project size (� = 003 in T1 ver-
sus � = 00128 in T25, which is significant (t = 40869,
p < 00001). Similarly, in Experiment 2, consultants
reduce their Stage 1 effort from 13.966 (T15 to 10.937
(T25, though the change is not significant (t = 10042,
n.s.). Support for H2 suggests indirectly that the client
can reduce IT project risk by awarding a smaller,
rather than larger, first-stage project to a faster learn-
ing team.

In summary, our experiments reveal that learning
and staging in contracting play an important role in
creating and capturing IT value for the client. Inter-
estingly, student subjects tend to expend more effort
than necessary, while the executive subjects seem to
be more rational in choosing the theoretically optimal
effort levels. This suggests potential future extensions
of our model to explore the heterogeneity in IT exper-
tise across subject groups.10 Overall, our findings are
robust across experiments; and we did not expect and
did not find significant qualitative behavior differ-
ences among subjects. An analysis of click-through
data also shows no significant differences across treat-
ments, subjects, or stages.11

7. Conclusions
By constructing a principal-agent model and validat-
ing our model experimentally, we study how firms
can create and capture EIT project value via IT con-
tract design. Our model integrates three previously
isolated streams of research—dynamic production
functions, multiperiod moral hazard, and IT outsourc-
ing and contracting—in the context of EIT project
management. Specifically, we create a single model
that links salient features of EIT markets (contract
choice, learning, risk management practice) to project
outcome.

10 We thank a referee for bringing this opportunity to our attention.
11 Our click-through data analysis is available upon request;
we omit it here for brevity.
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Table 3 Summary of Predicted versus Observed Consultant Efforts (Mean and Variance)

Stage 1 effort (x15 Stage 2 effort (x25

Observed Observed

Predicted Exp. 1 Exp. 2 Exp. 3 Predicted Exp. 1 Exp. 2 Exp. 3

T1 80172 100257 130966 80583 90820 120775 160850 100692
4302905 42802625 4405455 4404485 43506525 4206545

T2 40418 50586 100937 N/A 110805 120392 150109 N/A
4301535 45301345 4705165 46608125

Note. The mean is shown at the top of each cell; variance is shown in parenthesis.

Table 4 Summary of Predicted versus Realized Client/Consultant Profits

Client profit Consultant profit

Realized Realized

Predicted Exp. 1 Exp. 2 Exp. 3 Predicted Exp. 1 Exp. 2 Exp. 3

T1 220547 170247 160625 160695 12 120352 50650 100459
T2 220547 130952 130476 N/A 12 120743 40111 N/A
T3 250845 180486 180218 N/A 12 50486 60609 N/A
T4 290020 210466 210335 200652 12 −00642 60508 40887

Theoretically, we extend previous multiperiod
moral hazard models to incorporate (1) learning and
dynamic production functions, (2) risk diversification
and reduction over project periods, and (3) linkages
(contingent contracts) between periods. These char-
acteristics are particularly salient to large-scale EIT
projects but have not been formally treated or exper-
imentally tested in the literature.

In turn, our analysis yields several new insights
into contract design. First, we examine the role of
agent learning. In general, multistage contracts tend
to be favorable in the presence of vendor learning
or the possibility of exogenous risk reduction. Gains
from staging depend on the rate of learning and can
be large–relative to project revenue. Our results are
robust across situations in which learning depends not
just on first-period project size but also on investments
in training. In the absence of learning and discounting,
single-stage “big bang” projects are generally prefer-
able over staged projects among risk-neutral agents.
Our results appear to grow stronger when we consider
risk-averse agents. Finally, we provide a theoretical

Table 5 Summary of Results (t-statistics)

Hypotheses Experiment 1 Experiment 2 Experiment 3

H1(a): V increases from T1 to T3 00941 20010∗ N/A
H1(b): V increases from T3 to T4 20637∗ 40375∗∗∗ N/A
H1(c): V increases from T1 to T4 50614∗∗∗ 60046∗∗∗ 50205∗∗∗

H2: x1 decreases from T1 to T2 40869∗∗∗ 10042 N/A

Notes. One-tailed t-test assuming two-sample equal variances for Experi-
ment 1 and unequal variances for Experiments 2 and 3.

∗∗∗p < 00001, ∗∗p < 0001, and ∗p < 001.

basis for the conditions in which EIT value creation
takes an inverted-U form, and thus provide theoreti-
cal underpinnings for recent empirical findings about
EIT value creation associated with EIT project man-
agement (e.g., Aral et al. 2006, Bouhdary and Comes
2008, Hitt et al. 2002).

Using controlled lab experiments, we test theory-
based relationships among IT project value, learning,
and staging in contracting. We show that learning
allows the client to receive higher value by stag-
ing the project, and a faster learning rate results in
a smaller first-stage project size. Experiments sug-
gest that our theoretical results are robust to devia-
tions from our specific assumptions about production
functions or agent risk attitudes. Academically, these
findings extend the literature on software contract-
ing from development (e.g., Lee and Png 1990, Wang
et al. 1997, Whang 1992) to off-the-shelf software ser-
vice (e.g., implementation and maintenance). Practi-
cally, they have immediate implications for IT contract
design in EIT markets and also in the recently
emerged SaaS (software-as-a-service) markets where
traditional EIT software vendors are in transition
(Chou 2010), suggesting significant benefits from rel-
atively small changes to contract structure terms.

Our model and experiments highlight the impor-
tance of agent learning, patience, and risk attitude,
and their relationship with optimal project staging, in
the context of EIT project risk management. Although
our results provide some initial insights into one
aspect of contracting for enterprise software projects,
opportunities remain for extending these models and
empirically investigating the relationship between EIT
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value creation and contract structure using laboratory
or natural experiments. Some potential extensions of
our model include the following: examining the opti-
mal contracting across repeated projects where there
may be learning across projects; modeling contract-
ing for simultaneous projects, in the presence of agent
learning; examining the impact of competition among
vendors; or modeling the diseconomies of splitting a
project. We anticipate that a fruitful line of research
can be built upon our model.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/isre.1120.0448.
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